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1. Introduction

The gauge theory/gravity duality is probably one of the deepest ideas in theoretical physics,

in that it gives us in principle the possibility to understand quantum gravity exactly in

some setups. The main tool to address this duality involves the ideas of ’t Hooft of the

large N expansion of field theories in terms of a dual string theory [1]. A lot of recent
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progress has happened because there are some examples where the dual string theory is

known. The simplest and most studied example of this duality is the original formulation

of the AdS/CFT correspondence in terms of maximally supersymmetric Yang Mills theory

in four dimensions and type IIB superstring theory compactified on AdS5 × S5 [2].

The setup is such that in the limit where R (the radius of curvature of AdS5 × S5) is

large, the field theory is strongly coupled in the sense of ’t Hooft: R4 ∼ g2
YMN is large.

Indeed, it would be very nice to have a good understanding of how this duality works in

detail, as it would also give us hints on how to calculate observables in strongly coupled

gauge theories in four dimensions for more general setups.

There are various avenues to explore this correspondence, based on different observables

that one would want to work with. Historically, the first set of observables to be addressed

were the dual states to single graviton perturbations of AdS5 × S5 [3, 4] and how to go

about testing their correlation functions. These states are all members of BPS multiplets,

so their energies are protected by supersymmetry.

A few years later, it was discovered that there were interesting geometric limits where

the string theory could be quantized exactly [5 – 7]. Translating the corresponding quantum

numbers of states to the field theory language provided a new large N limit where one also

scales the energy and R charge of the observables as one makes the coupling constant

large [8]. The subsector of states that one focuses on is closely tied to the supersymmetry

of the original system, so the states in questions are nearly supersymmetric. In these

cases, perturbation theory at strong coupling was parametrically suppressed by the large

quantum numbers of the states in question, so it was possible to use perturbation theory

to examine the strong coupling regime of the field theory in a relatively safe environment.

This result produced an interest to make a systematic study of perturbation theory

near the free field limit. In particular, it became interesting to compute the full spectrum

of anomalous dimensions of all local operators on the field theory.

In the case where one focuses on operators whose free field dimension grows at most

as
√
N , the states are roughly described by a Fock space of closed string states, and

the dimension of the operators in the large N limit is dominated by the planar diagram

expansion. The expansion to one loop order of this problem revealed a very surprising

structure. Minahan and Zarembo [9] discovered that the one loop spectrum of anomalous

dimensions in a subsector of the theory gave rise to an integrable SO(6) spin chain: a

generalization of the Heisenberg XXX spin chain. This result was later generalized to

include the full set of local operators of the theory and it was shown that the full planar

one loop spectrum of anomalous dimensions gave rise to an integrable spin chain model

that could be solved by Bethe Ansatz techniques [10]. In a parallel development, Bena

et. al. [11] discovered that the string sigma model on AdS5 × S5 was also integrable

giving rise to the idea that the integrability structure of the string on AdS5 × S5 could

be used as a vehicle to understand the AdS/CFT correspondence in detail, at least in

the maximally supersymmetric case [12]. However, integrability is not a requisite of the

AdS/CFT correspondence, so apart from circumstantial evidence for integrability at weak

and strong coupling it is not clear that this will be the final answer to the AdS/CFT puzzle.

Obviously, having an integrable structure is a strong constraint on the string dynam-
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ics and it has been shown that many interesting general perturbations of the maximally

supersymmetric background destroy the integrability properties (see [13] for example). In

a similar vein, integrability can also happen for spin chain models with boundaries and it

is interesting to examine if such integrable structures can also appear in the perturbative

Yang Mills theory and use them as a tool to examine other configurations of matter in the

AdS/CFT correspondence. Indeed, the natural boundaries for open strings are D-branes,

so one can try to see if D-brane solutions preserve the integrability of the string theory and

then try to solve the string spectrum to understand the D-branes, much like solving the

string spectrum should help to understand gravity.

Here, one can envision two different types of D-branes. The first corresponds to adding

defects to the field theory so that there are “flavor branes” of various dimensionalities, and

the quarks can act as boundaries for the spin-chain string. These branes are always infinite.

This has been explored in [14 – 16], with the result that the one-loop set of anomalous

dimensions are actually integrable.

A second approach is to study finite volume D-branes on the AdS geometry. These

correspond to non-perturbative states of finite energy in the string description, so one can

try to find the dual description of these states in the field theory. Because of issues of strong

coupling physics, it is better if the corresponding states are supersymmetric to have some

protection for the calculations. From this point of view, one has to look for supersymmetric

D-brane configurations in the AdS geometry, and to their corresponding dual description

in the field theory. Once these D-branes are found, one should be able to describe the open

strings attached to them and study if these strings can be described by a boundary spin

chain model. After this is done, one can ask if the model corresponds to some form of

integrability or not and if this integrability is of the familiar Bethe-Ansatz form or not. A

lot more care is needed in this case because the branes are finite. This finiteness implies

that the D-brane can back-react to the presence of the string and the dynamics can be

much more complicated than in the case of an infinite brane.

This is the problem that we will concern ourselves in this paper. The branes under

question are going to be giant gravitons [17]. These preserve half of the supersymmetries

and their dual field theory states are known very well [18 – 20]. How to add strings to giants

was discussed in the works [21 – 24] which also included a description of how the enhanced

gauge symmetry of coinciding D-branes could be understood. One of the main difficulties

in performing the calculations is that the dimension of the operator is of order N and it is

harder to separate the planar and non-planar contributions. The dimension of the operator

implies that there is a combinatorial enhancement of the usual 1/N suppressions, so it is

not clear a priori that there is a well defined procedure that works in the general case,

and one has to work example by example to understand the dynamics of the purported

D-brane state.

The one loop spectrum of anomalous dimensions for strings attached to a maximal

giant graviton was described in [25], were it was found that the one loop planar anoma-

lous dimensions correspond to an ordinary spin chain model with integrable Dirichlet-like

boundary conditions. This work was extended to study what spin chain corresponds to a

more general giant graviton in [26], where we found that the spin chain in question has

– 3 –



J
H
E
P
0
9
(
2
0
0
6
)
0
6
5

a variable number of sites and therefore it is not an ordinary spin chain model anymore.

After a bosonization transformation, we found that the spin chain model could be also

understood in terms of a system of a Cuntz oscillator chain model (a boson chain, where

each spin corresponds to a single boson Fock space) with non-diagonal boundary condi-

tions. The non-diagonal boundary conditions imply that the total boson number is not

conserved. Our setup is also the limit q → 0 of a q-boson chain model with non-diagonal

boundary conditions, where the q boson is defined by the algebra aa† − qa†a = 1, with q a

real number. More recently, it has been claimed by [27] that in the maximal giant graviton

case, there seems to be a problem with integrability beyond the two loop order, in contrast

to the closed spin chain model [29, 30]. Agarwal argued that the Bethe Ansatz breaks down

by direct calculation at two loops and therefore the model is not integrable. Another claim

that studies the consistency of a Bethe Ansatz for the maximal giant graviton by Okamura

and Yoshida suggest that the BMN limit breaks down instead [28]. We have a different

interpretation of these facts: if the system is integrable, it will not realize integrability by

a Bethe Ansatz. To do this, we study more general giant gravitons.

In this paper we extend our analysis of [26] to try to understand the full spectrum of

the variable length spin chain model. The hamiltonian of the spin chain model is given by

H = 2λ
L∑

l=1

â†l âl − λ
L−1∑

l=1

(â†l âl+1 + âlâ
†
l+1)

+2λα2 + λα (â†1 + â1) + λα (â†L + âL) , (1.1)

and the operators âi obey the Cuntz algebra for a single species,

âiâ
†
i = I , â†i âi = I − |0〉〈0| , (1.2)

where operators corresponding to different sites commute. 1

In our exploration of the model we will find very interesting phenomena that at first

sight seem to contradict a very naive intuition about the system. The naive intuition is

that the open string ending on the D-brane has a discrete spectrum, because one has a

finite energy configuration of matter in the AdS5 geometry. However, there is a technical

issue with the fact that the energy is going to infinity as we take N large, because the

mass of the D-brane scales with N . The naive answer, in spite of being technically correct,

might also include some non-perturbative information on the finiteness of N , that is not

necessarily reflected in the strict large N limit. Indeed, we find that the spectrum of the

spin chain model is continuous. Upon thinking further about it, it becomes obvious that

the spin chain answer correlates very well with the AdS geometric intuition and we will

explain how this puzzle is solved in detail.

The continuous string spectrum also has some other consequences for the integrability

program. It seems to indicate that if integrability is present, it will not be of the form of a

Bethe ansatz solution. From this point of view, if integrability is present, the conjectures

1Since spin chain models also have applications to other areas of physics, the reader who is only interested

in the analysis of the spin chain model can jump to section 3 and should also read sections 4, 5
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in [30] need to be extended appropriately, or it is even possible that they might need

to be revised completely. For finite size systems, a Bethe ansatz solution would predict

that the spectrum of the system is related to solutions (roots) of polynomial equations of

high degree, giving rise to a discrete spectrum of configurations. Does this fact destroy

the integrability of the open string? We don’t think so. Although it is hard to come by

with integrable systems that can not be solved by Bethe Ansatz, there are some well known

examples of integrable systems that manage to be integrable without having a Bethe ansatz

solution. Indeed, the c = 1 matrix model is such an example. This model is dual to a two

dimensional string in a linear dilaton background. It is very well known that the number

of particle excitations is not conserved when scattering of the Liouville wall, so this non-

conservation of the number of particle excitations is contrary to the typical Bethe ansatz

solution. There are other hints that a Bethe ansatz is not the complete story for describing

the individual string dynamics at strong ’t Hooft coupling [31]. We believe our results in

this paper show that the Bethe ansatz breaks down perturbatively a lot faster for the open

string than for the closed string.

Our paper is organized as follows. We begin in section 2 by reviewing the physics of

giant gravitons. We show how the local geometry near an open string spinning around

the moving giant graviton arises from a Penrose limit of AdS5 × S5. We quantize some of

the bosonic modes of the open string in that background, which is valid for short strings

that sense the local geometry. We then consider longer strings that carry two angular

momenta, one of them in the same direction as the giant graviton. Then we expand the

Polyakov action in the limit of large transverse angular momentum just like with closed

strings [32, 34].

In section 3 we move to the dual description in SYM theory. We review the derivation

of the matrix of anomalous dimensions interpreted as the Hamiltonian of a spin chain with

variable number of sites. We then map this problem to a lattice of bosons with sources

and sinks at the boundaries. Then, we show numerical evidence for the agreement of the

bosonic Hamiltonian spectrum with the plane wave spectrum of the dual open string. We

also use coherent states to obtain a sigma model action in the limit of large R-charge.

It agrees with the Polyakov action of the open string in the large momentum limit, in

a particular gauge. Moreover we show how the SYM theory gives the correct boundary

conditions for the open strings.

In section 4 we show that the spectrum of the anomalous dimension matrix contains

continuum energy bands. We then argue that these can represent an instability of the dual

D-brane where the open string can absorb a significant fraction of the angular momentum

of the giant, making it collapse. In fact, we show that the lowest energy band is accessible

to semiclassical string excitations.

In section 5 we show some numerical evidence that lead us to conjecture the inte-

grability of the Hamiltonian. Finally, in section 6, we discuss our results and a list of

open problems that hopefully will be of interest for the reader. Some of the details of the

calculations for the different sections are shown in the appendices.
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2. Open strings on giant gravitons in AdS5 × S5

In this section we study giant gravitons in S5 and their open string excitations from the

point of view of string theory/supergravity. In the next section we will see how this stringy

description arises from the dual SYM theory.

We begin by briefly reviewing some of the basic geometrical properties of the spherical

D3-branes existing in the background of AdS5 × S5 that wrap an S3 inside the S5 [17].

These spherical branes are commonly called giant gravitons.

They are 1/2 BPS and their classical stability is due to the presence of the five-form

flux which exactly cancels their tension. As we will see, the movement of the non-maximal

giant gravitons gives rise to non-trivial boundary conditions to open string excitations.

We are interested in studying fast moving (nearly supersymmetric) strings on the D-brane

(close to the speed of light and near the point particle limit), as for these strings the

dynamics simplifies. These should be closely related to null trajectories in AdS5 ×S5 that

are contained in the D-brane worldvolume trajectory. Moreover, as we now show, for the

special supersymmetric case the geometry near this null trajectory is the usual pp-wave of

type IIB supergravity, so we will focus on this case.

2.1 Spherical D3-branes in AdS5 × S5

Spherical stable branes are known to exist in the maximally supersymmetric background

of type IIB supergravity AdS5×S5 [17]. Indeed, these branes are actually supersymmetric.

They can wrap an S3 either inside the S5 or inside of AdS5 [35, 36]. In this section and in

the rest of the paper we will focus on the former ones.

To begin with, let us write the metric of the AdS5 × S5 background as

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ′23 + dθ2 + cos2 θdψ2 + sin2 θdΩ2
3) , (2.1)

and the 3-sphere metrics as

dΩ2
3 = dϕ2 + cos2 ϕdη2 + sin2 ϕdξ2 ,

dΩ′23 = dϕ′2 + cos2 ϕ′dη′2 + sin2 ϕ′dξ′2 . (2.2)

In these coordinates, the Ramond-Ramond 4-form potential takes the form

C(4) = 4πNα′2
(
sinh4 ρ dt ∧ Ω′3 − sin4 θ dψ ∧Ω3

)
, (2.3)

and we have the relation R4 = 4πgsNα
′2.

McGreevy, Sussking and Toumbas found spherical D3-branes carrying angular momen-

tum in the S5 [17]. They are supersymmetric solutions of the brane action, that expand

in the 3-sphere Ω3. Choosing the static gauge, the parametric coordinates of the brane

(σ0, σ1, σ2, σ3) can be identified with space-time coordinates

t = σ0 , ϕ = σ1 , η = σ2 , ξ = σ3 . (2.4)

The brane carries angular momentum along the ψ direction and it is located at ρ = 0 and

at a constant θ = θ0.

ψ = ψ(σ0) , ρ = 0 , θ = θ0 , (2.5)

– 6 –
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The equations of motion are solved with ψ̇ constant. More precisely, and independently of

θ0, by ψ̇ = 1. Thus, the center of mass of the giant graviton is moving along an equatorial

null trajectory. However, each element of the giant is moving in a time-like orbit of radius

rel = R cos θ0. The radius of the giant also depends on θ0, rgg = R sin θ0.

For ψ̇ = 1, the momentum conjugate to ψ becomes

p = N sin2 θ0 . (2.6)

We can use this relation for highlighting a relevant feature of giant gravitons: their radii

grows as they increase their angular momenta

rgg = R

√
p

N
. (2.7)

Since we are considering giant gravitons that expand in S5, the radius is bounded by

rgg ≤ R and hence the angular momentum is also bounded by the number of units of

five-form flux on the sphere

p ≤ N . (2.8)

When the equality is satisfied the brane solution is known as maximal giant graviton. Notice

that in this case the radius of the orbit of an element of the giant rel =
√

1− p/N shrinks

to zero and all the angular momentum comes from the term with the Ramond-Ramond

form in the brane action. Being the maximal giant graviton static is the reason why this

special case turns out to be simpler. However, considering non-maximal giant gravitons

gives rise to interesting and novel phenomena.

2.2 A Penrose limit for an open string on a non-maximal giant

We obtain in this section, the effective geometry seen, in the large N limit, by an open

string with angular momentum J growing as
√
N , attached to a giant graviton whose

angular momentum p is growing proportionally to N . Then, the angle θ0 is kept constant

and the radius of the giant diverges. The open string will be effectively attached to a

flat D3-brane in a pp-wave background. For the maximal giant graviton this was already

analyzed in [22]. We now focus on smaller or non-maximal giant gravitons.

As we already said, each element of the giant graviton is moving in a time-like trajec-

tory. In order to travel in null trajectory, an observer on the giant should be spinning fast

along it. Then, we will study open strings with two components of angular momenta. In

particular, we now consider a trajectory along ψ and η, keeping ϕ = 0. A null trajectory

should satisfy

R2(−ṫ2 + cos2 θ0ψ̇
2 + sin2 θ0η̇

2) = 0 . (2.9)

Since ṫ = 1 and ψ̇ = 1, one necessarily has η̇ = ±1. Although it is not obvious at first sight,

this null trajectory is a null geodesic of AdS5×S5 and then a customary Penrose limit can

be taken. At this point it is worth highlighting the ratio of the angular momentum in both

angular directions

Jψ
Jη

= cot2 θ0 =
N

p

(
1− p

N

)
. (2.10)

– 7 –



J
H
E
P
0
9
(
2
0
0
6
)
0
6
5

We will later see the natural emergence of this quantity in the gauge theory side.

By following the standard Penrose limit procedure (see appendix A for details) we get

a plane-wave geometry with the metric

ds2 = −4dudv + 4ydudx−
6∑

a=1

z2
adu

2 + dx2 + dy2 +
6∑

a=1

dz2
a . (2.11)

The RR 5-form field strength becomes

F(5) = 2du ∧ (dz1 ∧ dz2 ∧ dz3 ∧ dz4 + dz5 ∧ dz6 ∧ dz7 ∧ dz8) . (2.12)

This is nothing but the usual maximally supersymmetric pp-wave of type IIB supergrav-

ity [5] displayed in unusual coordinates. This can be explicitly seen with an appropriate

coordinate transformation [37, 38].

2.3 Open strings on the pp-wave geometry (short strings)

Let us now consider the open string theory in the pp-wave geometry (2.11) corresponding

to an open string spinning along a non-maximal giant. This is a good description for short

strings which sense the local geometry near the giant graviton. We will focus on the bosonic

sector of the superstring and, in particular, on those modes that later will be compared to

the gauge theory predictions. More precisely, we will focus on open strings carrying two

angular momenta on the sphere with one of them in the direction of movement of the giant

graviton.

The bosonic part of the superstring action is

S =− 1

4πα′

∫
dτ

∫ π

0
dσ (−4∂αu∂αv + 4y∂αu∂αx− zizi∂αu∂αu

+∂αx∂αx+ ∂αy∂αy + ∂αzi∂αzi) . (2.13)

Fixing the light-cone gauge with the usual procedure

u = 2α′puτ , (2.14)

we obtain the light-cone action

Slc = − 1

4πα′

∫
dτ

∫ π

0
dσ
(
∂αx∂αx+ ∂αy∂αy − 4myẋ+ ∂αzi∂αzi +m2zizi

)
, (2.15)

where dots and primes refer to derivatives with respect to τ and σ respectively. We have

also defined the mass m = 2α′pu. As in the case of closed strings [39], this action can

also be derived as the quadratic order expansion of the string action around the classical

solution θ = θ0 and ψ = t.

The equations of motion from (2.15) are

(∂α∂α −m2)zi = 0 , (2.16)

∂α∂αx+ 2mẏ = 0 , (2.17)
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∂α∂αy − 2mẋ = 0 . (2.18)

For zi we obtain the usual massive equations. For x and y it is convenient to define a

complex field w = x+ iy which satisfies

∂α∂αw − 2imẇ = 0 , (2.19)

A solution of (2.19) is w = e−imτW whenever W is a solution of the massive equation

(
∂α∂α −m2

)
W = 0 . (2.20)

We now have to specify the boundary conditions for these fields. To this end, we have

to keep track of the D-brane position in the Penrose limit. This can be done using the

coordinate transformation of the Penrose limit (see appendix B). The original boundary

conditions are translated into Neumann boundary conditions for u, v, z1, z2 and Dirichlet

boundary conditions for x, y, z3, z4, z5, z6.

The mode expansion and the canonical quantization of fields z1, . . . , z6 (those satisfying

massive equations of motion), goes exactly as in [40]. We concentrate on excitations of fields

x and y which later will be related to the dual description.

Solutions of (2.20) satisfying Dirichlet boundary conditions can be expanded as

W =
∑

n>0

sin(nσ)

√
4α′

ωn

(
βne
−iωnτ + β̃∗ne

iωnτ
)
, (2.21)

where ωn = +
√
n2 +m2. The factor

√
4α′/ωn in the coefficients is included for later

convenience. The expansions for the original fields x and y are

x =
1

2

∑

n>0

sin(nσ)

√
4α′

ωn

(
β̃ne
−iω−n τ + βne

−iω+
n τ + β̃∗ne

iω−n τ + β∗ne
iω+
n τ
)
, (2.22)

y =
i

2

∑

n>0

sin(nσ)

√
4α′

ωn

(
β̃ne
−iω−n τ − βne−iω

+
n τ − β̃∗neiω

−
n τ + β∗ne

iω+
n τ
)
, (2.23)

where now, ω±n = ωn±m. The string spectrum can be obtained by canonical quantization.

With our normalization, the coefficients upgraded to operators satisfy two set of mutually

commuting oscillator-like algebra,

[βn, β
†
m] = δnm , [βn, βm] = [β†n, β

†
m] = 0 , (2.24)

[β̃n, β̃
†
m] = δnm , [β̃n, β̃m] = [β̃†n, β̃

†
m] = 0 . (2.25)

The spectrum of the sector we are considering is obtained by acting with the creation

operators β†m and β̃†m on a vacuum state satisfying βm|0〉 = β̃m|0〉 = 0. The light-cone

Hamiltonian can be expressed in terms of the number operators corresponding to the

oscillator operators. Scaling τ and σ by 2α′pu

Hxy
lc =

1

8α′2pu

∫ 2πα′pu

0
dσ
(
ẋ2 + ẏ2 + x′2 + y′2

)

– 9 –
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=
1

2α′pu
∑

n>0

(
ω−n β̃

†
nβ̃n + ω+

n β
†
nβn

)
. (2.26)

We see that excitations created by β†n have more energy than those created by β̃†n. Ex-

panding the square roots in ωn

Hxy
lc ≈

∑

n>0

[
Ñn

n2

8α′2pu2
+Nn

(
2 +

n2

8α′2pu2

)]
, (2.27)

where Nn = β†nβn and Ñn = β̃†nβ̃n.

The Hamiltonian and angular momentum generators are, in the light-cone gauge,

Hlc =−pu = i
∂

∂u
, (2.28)

pu =−1

2
pv =

i

2

∂

∂v
. (2.29)

Using the change of coordinates (A.1) we can express them in terms of the original gener-

ators

Hlc = i

(
∂

∂t
+

∂

∂ψ
+

∂

∂η

)
= ∆− Jψ − Jη , (2.30)

pu =
i

2R2

(
∂

∂t
− ∂

∂ψ
− ∂

∂η

)
=

∆ + Jψ + Jη
2R2

. (2.31)

Looking forward to a gauge theory interpretation we can label the angular momenta

as (c.f. (2.10)),

Jη = L , (2.32)

Jψ = cot2 θ0L =
α2

1− α2
L . (2.33)

where we define α ≡
√

1− p/N . Then, the sum of angular momenta is

Jη + Jψ =
L

1− α2
. (2.34)

For a finite light-cone energy it is required that ∆ ' L/(1−α2) and then pu ' L/R2(1−α2).

Finally, using R4 = 4πgsNα
′2 and λ = gsN/2π, the energy of each excitation is

Ẽn ≈
λπ2(1− α2)2n2

L2
, En ≈ 2 +

λπ2(1− α2)2n2

L2
, (2.35)

for x and y respectively. Thus, as expected, we see that string theory predicts a BMN limit

for the anomalous dimension of the dual operators describing these open string excitations.

We will come back to the dual interpretation of these energies in section 3.
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2.4 Semiclassical open strings (long strings)

If we want to consider more general open strings ending on the giant graviton, we need to

include the full AdS5×S5 background in the Polyakov action. However, it is well known by

now that we should expect a classical description in the large angular momentum limit2.

Again, as we did for short strings in the pp-wave geometry, we focus on the excitation

of two coordinates of the string. More precisely, the two coordinates of the sphere S 5

subject to Dirichlet boundary conditions. The reason is that the description of these

excitations in the dual theory is more easily isolated from the rest. Moreover we will fix

a particular gauge of reparametrization invariance different from the standard conformal

gauge, following closely [34]. This election will be the reflection of the a particular labeling

of the operators in the dual gauge theory.

These results were already presented in a previous letter [26]. We reproduce them here

providing more details of their derivation. The starting point is the Polyakov action in

phase space. We can write the conjugate momenta as,

pµ = −Gµν(A∂0x
µ +B∂1x

µ) , (2.36)

where A =
√−gg00, B =

√−gg01 and gab is the worldsheet metric. The Polyakov action

then takes the form

Sp =
√
λYM

∫
dτ

∫ π

0

dσ

2π
L , (2.37)

where,

L = pµ∂0x
µ +

1

2
A−1 [Gµνpµpν +Gµν∂1x

µ∂1x
ν ] +BA−1pµ∂1x

µ . (2.38)

Here we have factorized the radius of AdS5 and S5 so that by the AdS/CFT correspondence

λYM = g2
YMN = 8π2λ = R4/α′2. Moreover, A, B play the role of Lagrange multipliers

implementing the constraints Tab = 0.

For an open string traveling with the giant graviton and with excitations on the sphere

only, the effective geometry is R× S5. We can write the corresponding metric as,

ds2 = −dt2 + |dX|2 + |dY |2 + |dZ|2 , (2.39)

where |X|2 + |Y |2 + |Z|2 = 1. The giant graviton will be orbiting in the Z direction with

Z =
√

1− p/Neit and will wrap the remaining S3. We will put our string at X = 0. Then

we define the coordinates,

Z = rei(t−φ) , (2.40)

Y = ±
√

1− r2eiϕ , (2.41)

for which the giant graviton is static at r =
√

1− p/N and, say, φ = 0 (we can always shift

φ by a constant). The metric becomes,

ds2 = −(1− r2)dt2 + 2r2dtdφ+
1

1− r2
dr2 + r2dφ2 + (1− r2)dϕ2 . (2.42)

2The literature on this subject is very extensive, but for a nice review see [42].
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The connection between these coordinates and the plane wave coordinates is shown in

appendix A.

The momentum in ϕ is conserved and is given by,

L =
√
λYM

∫ π

0

dσ

2π
pϕ ≡

√
λYMJ . (2.43)

We choose a gauge that distributes the angular momentum pϕ homogeneously along the

string. Furthermore, we choose τ to coincide with the global time in the metric. Thus, our

gauge is

t = τ , pϕ = 2J = const. (2.44)

These type of gauges were introduced in [33]

We then implement the constraints that follow from varying A and B in (2.37) directly

in the action. This allows us to write the Lagrangian in terms of the momenta pr and pφ
and the fields r and φ and their derivatives. These are the two fields subject to Dirichlet

boundary conditions. We get (up to a total derivative in τ),

L = (1− φ̇) pφ + ṙ pr −
√
a p2

φ + b p2
r + 2c pr pφ + d , (2.45)

where,

a = 1 + (1 − r2)

(
φ′2

4J 2
+

1

r2

)
, (2.46)

b = (1− r2)

(
r′2

4J 2
+ 1

)
, (2.47)

c = −r
′φ′(1− r2)

4J 2
, (2.48)

d =
4J 2

1− r2
+ r2φ′2 +

r′2

1− r2
. (2.49)

As usual, dots and primes denote derivatives with respect to τ and σ respectively. The

remaining gauge freedom can be fixed by demanding that the equations of motion for

pr, pφ, r and φ that follow from (2.45) agree with the ones derived from the original

action (2.37) [34]. This will fix the value of B in terms of pr, pφ, r and φ.

Since the momenta pr and pφ enter the Lagrangian (2.45) algebraically, we can solve

for them using their equations of motion and write the action in terms of the fields r and

φ and their derivatives. We get,

L = −
(

d

1− a p̃2
φ − b p̃2

r + 2c p̃φp̃r

)1/2 [
1 + (1− φ̇)p̃φ − ṙ p̃r

]
, (2.50)

where,

p̃φ =
ṙc− (1− φ̇)b

ab− c2
, (2.51)
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p̃r =
ṙa− (1− φ̇)c

ab− c2
. (2.52)

Finally, we take the limit J → ∞ and assume that the time derivatives are of the

order ∂0x
µ ∼ 1/J 2. This last condition can be made more precise by solving for the time

derivatives in terms of the spatial derivatives as in [34]. However, in our case this is not

necessary because we just want the lowest order in 1/J . Thus, rescaling σ → πσ, we get

to lowest order,

S ≈ −L
∫
dt

∫ 1

0
dσ

[
r2φ̇

1− r2
+

λ

L2
(r′2 + r2φ′2) +O

(
λ2

L4

)]
. (2.53)

We note that L serves as an inverse “Planck constant” and so L → ∞ corresponds to a

classical limit as promised. This coordinates are subject to Dirichlet boundary condition,

which are expressed as,

r|σ=0,1 =

√
1− p

N
, (2.54)

φ|σ=0,1 = const. (2.55)

3. Open strings on giant gravitons from N = 4 SYM

In this section we study the dual description of open strings on giant gravitons given by

N = 4 SYM. It is very interesting to see how the complete geometrical picture discussed in

the last section is recovered from the gauge theory. In particular, we show the emergence

of the BMN spectrum, the Polyakov action, the Dirichlet boundary conditions and the

reparametrization invariance of the string world sheet. All of these geometrical ingredients

are encoded in the matrix of anomalous dimension of the operators dual to giant gravitons

with open string excitations.

There is considerable evidence that the dual operators to these D3-branes are of

determinant-like form [18, 19, 23] (see appendix C for our conventions)

Op = ε
j1···jp
i1···ipZ

i1
j1
· · ·Z ipjp , (3.1)

where Z is one of the three complex scalars of N = 4 SYM. These are chiral operators

and, by supersymmetry, their dimensions are determined in terms of their R-charge: ∆ =

J (BPS condition). For Op we see that ∆ = p ≤ N , and hence this operator obeys

the “momentum” bound of the giant gravitons. This makes sense from the AdS/CFT

correspondence since we should identify the U(1) charge of (3.1) as the angular momentum

of the D-brane and ∆ as its energy.

The operator dual to a single string attached to an S5 giant graviton of momentum p

is obtained by appending a word to the determinant-like operator [22, 24], which represents

the open string 3,

OpW = ε
j1···jp
i1···ipZ

i1
j1
· · ·Z ip−1

jp−1
W

ip
jp
, (3.2)

3More precisely, as we will see later, the dual operator to the classical non-maximal giant graviton is

actually a coherent state of operators like (3.2) with different values of p.
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where W is a “word” built out of the scalar fields X, X̄, Y, Ȳ , Z, Z̄ , as long as we only

consider excitations on the S5 directions. Each scalar field carries a unit of U(1) charge

corresponding to a unit of angular momentum in one of the three orthogonal planes that

cut S5 in the dual string picture.

We also have the condition that the Z field is not allowed to be at the borders of

W [24]. This constraint comes from the fact that when a Z is at the border of W , the

operator factorizes as a bigger giant plus a giant of the same size with a closed string (see

appendix C). In fact, in general, the operator (3.2) can be expanded in terms of traces [23].

However, for p sufficiently large the mixing of (3.2) with closed strings (traces) is suppressed

in the large N limit. For this reason we will only consider operators with
√
N . p ≤ N .

3.1 Open strings as variable length spin chains

We are interested in computing the mixing matrix of anomalous dimension for this type

of operators at the one-loop approximation and large N limit. Thus, we will only consider

planar diagrams. As usual, we begin by defining the correlation function

MAB =
〈
Õ∗A(x)ÕB(0)

〉
free + interacting

, (3.3)

where the operators have been normalized according to

ÕA(x) =
OA(x)

〈
O∗A(x)OA(0)

〉1/2

free

, (3.4)

and where A, B are collective indices labeling different giant graviton configurations with

a single string. At one-loop and in the large N limit, MAB will have the following general

form,

MAB =
1

|x|2∆0
(δAB − 2 ΓAB log(|x|Λ) + · · · ) , (3.5)

where ∆0 is the classical dimension, ΓAB is the matrix of anomalous dimension and Λ is an

ultraviolet cutoff. We then identify the anomalous dimension matrix with the Hamiltonian

of the corresponding string quantum states,

ΓAB ∼= 〈ψA|H|ψB〉 , (3.6)

where ÕA ∼= |ψA〉. This is just the operator state correspondence which is available for any

CFT: the Hamiltonian corresponds to taking radial time and compactifying the CFT on a

round sphere.

In [25] the case of a maximal giant graviton was considered and it was shown that the

resulting planar anomalous dimension matrix corresponds to an integrable open spin chain

with SO(6) symmetry. For the case of non-maximal giants, most of the field contractions

are the same as with the maximal giants, the difference being the particular combinatorics

of the ε symbol for p 6= N . However as we remarked in [26], there is a very important

new interaction in the case of the non-maximal giant graviton: Z fields can be exchanged

between the word W and the rest of the operator. This accounts for the exchange of
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angular momentum between the giant and the string since the open string is “dragged” by

the non-trivial movement of the non-maximal giant graviton.

The details of the combinatorics involved for this and the rest of the interactions

between the fields in the operator are explained in the appendix C. Here we just quote

the main result focusing on a SU(2) subsector involving the fields (say) Y and Z 4. There

are two kind of terms in the mixing matrix of anomalous dimension. Those corresponding

to bulk interactions in the spin chain Hamiltonian, which where already present in the

maximal case. They are nothing but the bulk terms of a SU(2) XXX spin chain. The non-

maximality of the giant gives rise to new terms proportional to the quantity α ≡
√

1− p/N .

The most important is a boundary term for the spin chain Hamiltonian, coming from the

correlation function representing the exchange of a Z field between the word W and the

determinant

〈Õp+1∗
W (x) ÕpW ′(0)〉 ∼ −2λ log(Λ|x|)

|x|2∆0

√
1− p

N
, with,

W = Y w ,

W ′ = Y Zw .
(3.7)

This correlation function introduces a variability in the spin chain length at the boundaries.

However, it is not a priori clear how to deal with this SU(2) spin chain of variable length.

In the following we present how, by relabeling the operators, we can translate the spin

chain of variable length into a more manageable bosonic lattice of fixed length and with

sources/sinks of bosons at the boundaries.

The most general word in this sector is completely specified by the number of Z fields

between two consecutive Y fields,

(Y Zn1Y Zn2Y . . . Y ZnLY )ji
∼= |n1, n2, . . . , nL〉 . (3.8)

Thus, the word has a fixed number L+1 of Y fields, representing L+1 units of angular

momentum in Y direction in the string. The number of Z fields and the corresponding

angular momentum is measured by the number operator n̂ =
∑

i n̂i. The size of the giant

graviton is measured by p̂ = (p+ 1)Î − n̂, where p is the (fixed) total number of Z fields in

the operator. The exchange of Z fields occurs only at the first and last site of the bosonic

lattice. We will see that the choice of leaving fixed the number of Y fields in our labeling

is in correspondence with the gauge choice (2.44) in the Polyakov action.

Since there is equal probability of a Z entering or leaving the word (see appendix C),

one expects that for sufficiently large p the lowest energy states have (〈p̂〉 − p)/N ∼ 0

in the large N limit. That is, the backreaction to the size of the giant graviton should

be negligible. Therefore, in what follows we assume that p ∼ γN with 0 < γ ≤ 1, and

approximate p̂/N ≈ p/N in all matrix elements of the Hamiltonian. Later, we will see that

this is a consistent approximation.

The Hamiltonian dual to the anomalous dimension matrix for this sector then takes

the form

H = 2λ
L∑

l=1

â†l âl − λ
L−1∑

l=1

(â†l âl+1 + âlâ
†
l+1)

4The labeling of the scalar fields by Y and Z is done on purpose to make the connection with the

coordinates used in section 2.3 more explicit.
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+2λα2 + λα (â†1 + â1) + λα (â†L + âL) , (3.9)

where L .
√
N and the operators âi obey the Cuntz algebra for a single species [43],

âiâ
†
i = I , â†i âi = I − |0〉〈0| , (3.10)

where operators corresponding to different sites commute.

For our purposes it will be more useful to think of this algebra as the q → 0 limit of

the deformed Weyl algebra, ââ†− qâ†â = 1, [n̂, â†] = â†, [n̂, â] = −â. The number operator

n̂ can be constructed in terms of the oscillator operators as in [44].

Terms in the first line of the Hamiltonian (3.9) come from the bulk interactions that

were already present in the maximal case. The first term indicates that each bosonic

oscillator contributes with an energy 2λ whenever its site is occupied. The second term is

a hopping interaction for bosons to move between sites, so that the energy is reduced with

bosons which are not localized. The second line of (3.9), apart from the constant term,

provides source and sink terms at the boundaries of the bosonic lattice, which give rise

to non-diagonal boundary conditions, since the total boson occupation number does not

commute with the Hamiltonian.

In the next subsections we will discuss two different sectors of the Hamiltonian (3.9)

and how they give rise to the BMN limit of short strings and the semiclassical limit of long

strings discussed above.

3.2 Evidence for a BMN limit

At this point, it could be a significant verification of the validity of our dual description

to see the BMN spectrum (2.35) arising from the Hamiltonian (3.9). Unfortunately, we

have not been able to diagonalize the Hamiltonian (3.9). Nevertheless, evidence for its

integrability will be given in section 5.

However, we do know the ground state:

|Ψ0〉 = (1− α2)L/2
∞∑

n1,...,nL=0

(−α)n1+···+nL |n1, . . . , nL〉 , (3.11)

and it has energy E = 0. The expectation value of the number operator for the ground

state is,

〈Ψ0|n̂|Ψ0〉 =
LN

p

(
1− p

N

)
, (3.12)

which is generically of order L, unless p¿ N . Since L .
√
N we see that the backreaction

to the giant is indeed small compared to p ∼ N . Moreover, note that setting α = 0 gives

the familiar ferromagnetic ground state of the maximal giant graviton:

lim
α→0
|Ψ0〉 = |0, 0, . . . , 0〉 ' (Y Y · · · Y )ji . (3.13)

The expectation value (3.12) gives the amount of angular momentum that the string

acquires in the direction of the movement of giant. Dividing by the fixed number of Y
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fields we obtain the ratio of angular momentum in the two directions of the S 5.

Jψ
Jη
∼= number of Zs in W

number of Y s in W
≈ 〈Ψ0|n̂|Ψ0〉

L
=
N

p

(
1− p

N

)
. (3.14)

This is precisely the same ratio of angular momentum components of the null-geodesic

we used to take the Penrose limit (2.10). Thus, as expected, the ground state (3.11) cor-

responds to a point like string traveling with the giant, and small fluctuations around it

should correspond to the modes of the open string in the pp-wave background. Unfortu-

nately we cannot solve for the lowest energy modes of (3.9) in general. However, we can

treat perturbatively the boundary terms (α =
√

1− p/N ≤ 1) and try to reproduce the

spectrum (2.35) at lowest order in α.

Before doing this, a few comments are in order. First, let us look at the case of the

maximal giant graviton (α = 0). In this case there is a precise dictionary between the

plane wave excitations and the corresponding gauge theory operators [22]. The ground

state (3.13) is excited by adding Z fields to the word W with some momentum determined

by the boundary conditions. For example, the first excitation is given by a single Z:

|ψ1
n〉 =

√
2

L+ 1

L∑

l=1

sin

(
nπl

L+ 1

)
|l〉 , where |l〉 ∼= (Y lZY L+1−l)ji . (3.15)

The anomalous dimension of this operator is,

E(0)
n = 2λ

[
1− cos

(
nπ

L+ 1

)]
≈ λπ2n2

L2
, (3.16)

On the other hand, the first excited state of the open string in the pp-wave background

has energy,

En(String) ≈ 1 +
λπ2n2

L2
. (3.17)

The factor of 1 can be interpreted from the increase of the classical dimension of the word

by the insertion of a single Z field. Then, the anomalous dimension (3.16) agrees with the

small correction in (3.17).

However, for the case of the non-maximal giant graviton there is no precise notion of

the length of the word, and hence its classical dimension. This is because Z letters can

enter and leave the word. This means that we do not have a clear cut distinction between

what we call the “string” and the “giant”. In fact, we only know the average length of the

word to leading order in L: L + 1 + 〈n〉 ∼ O(L). Adding or subtracting a finite number

of Z fields to our operators will have no effect in the anomalous dimension in the planar

approximation.

In the spectrum of open strings on the pp-wave geometry we found what appears

to be two independent energy modes (2.35) differing by a factor of even integers. But

this is precisely the ambiguity in the classical dimension of the corresponding operators.

Therefore, we should only compare the anomalous dimensions of our operators to the
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O(λ/L2) corrections in the string theory spectrum. In fact, we see that setting α = 0

in (2.35) gives precisely the anomalous dimension (3.16).

We now want to calculate the lowest order correction in α to the energy of the low-

est BMN excitations of the maximal giant. For the sake of simplicity, we focus on the

eigenstates with one-boson; that is, a single Z on the word. We write the Hamiltonian as

H = 2λα2 +H0 + αV , (3.18)

where

H0 = 2λ

L∑

l=1

â†l âl − λ
L−1∑

l=1

(â†l âl+1 + âlâ
†
l+1) , (3.19)

and

V = λ(â†1 + â1 + â†L + âL) . (3.20)

The ground state |ψ0〉 of the unperturbed Hamiltonian H0 has zero occupation number

and zero energy (c.f. (3.13)). The one-boson eigenstates and eigenenergies were given in

eqs. (3.15) and (3.16).

The corrected energy is

En = 2λα2 +E(0)
n + αVnn + α2

∑

k 6=n

|Vnk|2

E
(0)
n −E(0)

k

+O(α3) . (3.21)

Matrix elements of V in the unperturbed basis are non-vanishing only for eigenstates that

differ in one boson. Then, Vnn is zero and the first correction is order α2. To compute the

correction to the one-boson eigenvalue at this perturbative order, the only matrix elements

needed are

〈ψ1
n|V |ψ0〉 = λ

√
2

L+ 1
sin

(
nπ

L+ 1

)
(1− (−1)n) , and 〈ψ1

n|V |ψ2
m〉 , (3.22)

where |ψ2
m〉 are the unperturbed two-boson eigenstates (in this case m is a collective index).

However, it is hard to write down the two-boson eigenstates in closed form. One can not

use a dilute gas approximation, because this would only be valid for small energies and we

need |ψ2
m〉 for all energies. Still, it is possible diagonalize numerically H0 in the two-boson

subspace, i.e. to solve the eigenvalue problem for a L(L + 1)/2 × L(L + 1)/2 matrix, for

different finite values of L and use the results to compute the energy correction. Then, we

can see that as the number of sites increases, the correction not only captures the 1/L2

dependence but also the proportionality factor tends to the one predicted by the plane-wave

spectrum

En ' λ
π2n2

L2
(1− 2α2) . (3.23)

For instance, in table 1 we show the shift of the n = 1 one-boson eigenvalue divided by the

predicted shift (3.23).

If our Hamiltonian is integrable (see section 5), then maybe some generalization of the

Bethe Ansatz can be used to diagonalize it and provide the final proof of the presence of the
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L − ∆E1

2π2/(L+1)2

15 1.122

20 1.091

25 1.079

30 1.060

Table 1: Shift in n = 1 one-boson energy.

BMN limit. Integrability is not strictly necessary. There are other forms of obtaining the

BMN limit exactly at strong coupling using different techniques [45, 31, 46], see also [47].

We also have uncovered some other qualitative features of the spectrum including the

presence of continuum bands by doing perturbative diagrams that cast doubt on a solutions

of the problem in terms of a Bethe Ansatz. We discuss these in section 4.

3.3 The semiclassical limit

In general, it is possible to obtain a semiclassical sigma model action governing the dy-

namics of a given spin chain. In [32] it was shown that the sigma model obtained from

the spin chain associated to the SU(2) sector of SYM coincides with the Polyakov action

describing the propagation of closed strings in AdS5 × S5, in a particular limit. This com-

parison was extended to other sectors [48, 49] and to other realizations of the AdS/CFT

correspondence [50 – 52].

Now we will obtain a semiclassical sigma model action that governs the dynamics of

bosonic lattice in the L→∞ limit, using the coherent states basis for the path integral rep-

resentation of the evolution operator. This was already discussed in our previous note [26].

For completeness, we will use the q-deformed Weyl algebra and will set q → 0 when needed.

In appendix E, we give the definition of the coherent states for this algebra.

One can then put a coherent state at each site of the bosonic lattice and construct the

propagator between the coherent states in the usual way (see [53]). The resulting action

is,

S =

∫
dt

(
i〈z1 . . . zL|

d

dt
|z1 . . . zL〉 − 〈z1 . . . zL|H|z1 . . . zL〉

)

=

∫
dt

[
−

L∑

i=1

fq(ri)φ̇i − 2λ
(
α2 + α(r1 cosφ1 + rL cosφL)

)

−2λ

(
L∑

i=1

r2
i −

L∑

i=1

riri+1 cos(φi − φi+1))

)]
, (3.24)

where we defined,

fq(x) = x2 exp′q(x
2)

expq(x
2)
. (3.25)

In the large L limit, the complex modulus r and the complex argument φ become functions

of a continuous variable 0 ≤ σ ≤ 1. We consider the action (3.24) in the limit L→∞ and
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λ→∞ but keeping λ/L2 fixed and small. The result is the following sigma model,

S = −L
∫
dt

∫ 1

0
dσ

[
fq(r)φ̇+

λ

L2
(r′2 + r2φ′2)

]

− λ
∫
dt
[
α2 sin2 φ+ (α cosφ+ r)2

]∣∣∣∣
σ=0

− λ
∫
dt
[
α2 sin2 φ+ (α cosφ+ r)2

]∣∣∣∣
σ=1

, (3.26)

where dots and primes refer to derivatives with respect to t and σ respectively. If we take

the limit q → 0, the function above reduces to fq(r)→ r2/(1−r2) and we see that the bulk

action of (3.24) coincides with the Polyakov action in the large momentum limit (2.53).

This gives a direct geometrical meaning to the fields r and φ of the coherent states: as

spacetime coordinates.

The classical Hamiltonian of the coherent states is

〈H〉 =
λ

L

∫ 1

0
dσ(r′2 + r2φ′2) + λ

[
α2 sin2 φ+ (α cosφ+ r)2

]∣∣∣
σ=0

+ λ
[
α2 sin2 φ+ (α cosφ+ r)2

]∣∣∣
σ=1

. (3.27)

One sees that the boundary terms will give rise to a large anomalous dimension of order

∼ λ unless,

r|σ=0,1 = α =

√
1− p

N
, (3.28)

φ|σ=0,1 = π . (3.29)

These are exactly the Dirichlet boundary conditions (2.54) on open strings on non-maximal

giant gravitons! The fact that the boundary terms give rise to a large anomalous dimension

is nothing but the statement that moving the D-brane takes a lot of energy.

In the limit L→∞ we get the following classical equations of motion:

rṙ

(1− r2)2
+

λ

L2
∂σ(r2φ′) = 0 , (3.30)

rφ̇

(1− r2)2
+

λ

L2
(rφ′2 − r′′) = 0 . (3.31)

Looking at the Hamiltonian (3.27) we see that the classical solutions to these equations

will have energies ∼ λ/L, which represent a small multiplicative correction to their “bare”

energies: L + 1 + 〈n〉 + O(λ/L) ∼ L(const. + O(λ/L2)). This is already a familiar result

for closed semiclassical strings [42].

The average number of bosons in the lattice is,

〈n̂〉 = L

∫ 1

0
dσ

r2

1− r2
. (3.32)
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This provides a way of measuring length of the spin chain in the original XXX model

formulation. In general, 〈n̂〉 is not conserved and therefore the string will oscillate in

length. Using eq. (3.30), this variation can be put simply as,

∂t〈n̂〉 = 2
λ

L

(
1− p

N

) (
φ′|σ=0 − φ′|σ=1

)
. (3.33)

Note however that we must ensure that 〈n̂〉 is bounded so that neglecting the backreaction

to the giant remains a good approximation.

Moreover, we see how the particular choice of spacetime coordinates and world sheet

gauge are encoded in the SYM side. We labeled our states using the word W only, which

is dual to the open string. This is translated to the string side by choosing a coordinate

system for which the giant graviton is static. Finally, by labeling the states as in (3.8)

we are explicitly distributing the angular momentum in Y uniformly along the string.

This has very strong implications in the AdS/CFT correspondence, because we are seeing

explicitly the reparametrization invariance of the string worldsheet: the gauge that makes

the calculation more natural is different than the one considered in other semiclassical

setups [39, 34].

4. A D-brane instability?

He have seen that the anomalous dimensions of the dual operators of non-maximal giant

gravitons with open strings excitations is described in terms of a spin chain of variable

length. We offered an alternative description in terms of a bosonic lattice. There, the

variability of the spin chain’s length was translated into the variability of the boson occu-

pation number. In this section, we study the possibility of having configurations with the

occupation number growing monotonically in time. More precisely, we show evidence for

the presence of continuum energy bands in the spectrum of the Hamiltonian (3.9). If a

configuration has enough energy to access the continuum, a more general time dependence

than an oscillation is allowed for its mean occupation number.

In particular, we argue that in the large L limit there is at least one band that is

accessible to classical long strings with energies ∼ λ/L. This has profound consequences

for the stability of the D-branes because the word W in (3.2) can be excited in such a

way to absorb a large number of Z fields from the giant graviton. In the dual picture,

this means that the string becomes longer and longer absorbing more and more angular

momentum from the D-brane. A long string attached to the moving giant graviton, could

suffer centrifugal forces, consequence of a non-geodesic movement, and if the string is

long enough its tension could be overwhelmed by these forces. Finally, the D-brane would

become small enough so that the mixing amplitude with closed strings is no longer negligible

(see appendix C). In fact, way before this happens, the string would have absorbed O(N)

Z fields so that the planar approximation used in the calculations will be invalidated. The

outcome of the instability is then difficult to predict but can have important consequences

in string theory.
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4.1 One site

We start with the Hamiltonian for L = 1:

H = 2λ
[
α2 + â†â+ α(â† + â)

]
. (4.1)

The advantage of this case is that we can diagonalize H explicitly for q = 0. This is

because â† and â act as shift-left and shift right operators for q = 0. Thus, the matrix

representation of H looks like the following matrix

H ∼ α2 +




0 α 0 0 . . .

α 1 α 0 . . .

0 α 1 α
. . .

...
. . .

. . .
. . .

. . .



, (4.2)

and this is the same hamiltonian for a particle hopping on a semi-infinite lattice, as well as

the quadratic form that one considers when studying the potential energy of a semi-infinite

collection of beads attached by springs.

The complete set of eigenstates consists of the ground state (3.11) with L = 1, which

is considered as a bound state for the hopping particle to scatter of the boundary and the

continuum,

|Ψ(k)〉 =

∞∑

n=0

[sin kn+ α sin k(n+ 1)] |n〉 , with 0 ≤ k ≤ π , (4.3)

and energy

E(k) = 2λ(1 + 2α cos k + α2) . (4.4)

The gap with the ground state turns out to be

2λ(1 − α)2 . (4.5)

Moreover, the maximal energy of the continuum is 2λ(1 + α)2. These continuum states

follow a delta-function normalization

〈Ψ(k′)|Ψ(k)〉 =
π

2
(1 + 2α cos k + α2)δ(k′ − k) . (4.6)

We can then use them to build normalizable wave-packets

|φ〉 =

∫ π

0
dkf(k)|Ψ(k)〉 , (4.7)

choosing a function f(k) so that 〈φ|φ〉 = 1 and the initial occupation number 〈φ|n̂(0)|φ〉 is

finite. Then we can have normalized states with finite energy but with growing occupation

number.

For instance, the wave-packet

|φ〉 ∝
∫ π

0
dk sin k|Ψ(k)〉 =

π

2
(α|0〉 + |1〉) , (4.8)
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t

< n>

Figure 1: Mean occupation of wave-packet (4.8).

increases its mean occupation number while it evolves, as it is depicted in figure 1.

This continuum spectrum feature is not only a property of q = 0. Indeed, when q < 1

we always find the same behavior. This is because for sufficiently large n (occupation

number), the hamiltonian asymptotes exponentially quickly to a similar form

H ∼




. . .
. . .

. . .
. . .

. . .
. . .

. . . α 1 α
. . .

. . .
. . .

. . . α 1 α
. . .

. . .
. . .

. . .
. . .

. . .
. . .



, (4.9)

since qn → 0.

4.2 Two sites

For two sites we can no longer solve for the exact spectrum but we can do (degenerate)

perturbation theory around the maximal case (α = 0 and q = 0). The unperturbed

Hamiltonian for two sites is,

H0 = 2λ â†1â1 + 2λ â†2â2 − λ(â†1â2 + â1â
†
2) . (4.10)

Since this Hamiltonian correspond to an integrable spin chain, we can diagonalize it

using the usual Bethe Ansatz. The eigenstates are (e.g. see [25]),

|Ψ(0)
n (k)〉 = An(k)

n∑

l=0

[2 sin(k l)− sin(k(l + 1))] |l, n〉 , (4.11)

where the states |n1, n2〉 have been re-labeled |n1, n1 + n2〉 ≡ |l, n〉 to reflect the fact that

the number operator commutes with H0. The energy of these eigenstates is given by,

E(k) = 2λ(2− cos k) , (4.12)

and the complex momentum k is determined by the equation,

4 sin(kn)− 4 sin(k(n+ 1)) + sin(k(n+ 2)) = 0 . (4.13)

We now want to consider first order perturbation theory in α around these eigenstates.

Again, the perturbing potential is (3.20) and we ignore the constant term in (3.18) which is
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O(α2). In particular we are interested in the continuum energy bands that could arise from

turning on the perturbation. For that to occur we will need to have an infinite degeneracy

or an accumulation point in k in the large n limit.

Let us start by looking at the infinite degenerate roots of (4.13). It is easy to show

that for a given n, the degenerate roots have the form k = aπ/b with a, b ∈ Z and where

the degeneracy occurs for states |Ψ(0)
n′ 〉 with n′ = n+Zb. Now, the perturbation (3.20) has

non-zero matrix elements only between unperturbed states differing in n by one. Therefore,

at first order in perturbation theory we only need to consider the degenerate roots: k = 0, π

(we can take k ∈ [0, π] without loss of generality).

For k = 0, the unperturbed energy is E(0) = 2λ. To find the first order correction in

α we need to diagonalize V in the subspace of the unperturbed energy eigenstates (4.11).

However for our purposes, we only need to look at the large n limit to see the presence of

the continuum. One can show that in this limit,

V |Ψ(0)
n 〉 ∼ 2λα

(
|Ψ(0)

n+1〉+ |Ψ(0)
n−1〉

)
. (4.14)

Thus the asymptotic form of the first order correction to the eigenstates is going to be of the

form of a superposition of plane waves |Ψ(1)
n 〉 ∼

∑
n e

ipn|Ψ(0)
n 〉 with continuum momentum

p and energy:

E(1) = 4αλ cos p . (4.15)

If we follow the same procedure with the root k = π we find that at large n the matrix

elements of V vanish and so there is no continuum band at this energy. Next, we consider

the case of complex k and we find an exponential accumulation point at k = i log 2 with

energy E(0) = 3λ/2. The asymptotic form of the action of the perturbation is,

V |Ψ(0)
n 〉 ∼

3

2
λα
(
|Ψ(0)

n+1〉+ |Ψ(0)
n−1〉

)
, (4.16)

and so we get a continuum band with,

E(1) = 3αλ cos p . (4.17)

4.3 Multiple sites

For multiple sites a quantum analysis is no longer feasible. Nevertheless the presence of

continuum bands can be seen directly from a classical analysis. For any number of sites

the classical limit is ~ → 0 and thus we can use the coherent state Hamiltonian. For

completeness, we will work with 0 ≤ q ≤ 1 and then take the limit q → 0 when needed.

Looking at the action (3.24) we see that our system is subject to the constraints,

pri = 0 ,

pφi + fq(ri) = 0 , (4.18)

and then, the phase space is isomorphic to the configuration space (ri, φi), which is a

product of L discs Dq of radii 1
1−q . Using the auxiliary constants r0 = rL+1 = α and
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α r φ

Figure 2: Closed and open orbits in Dq .

φ0 = φL+1 = π the classical Hamiltonian can be simply posed as

HL = 2λ

L∑

i=0

ri (ri − ri+1 cos(φi − φi+1)) . (4.19)

In particular, let us first consider the one-site classical Hamiltonian

H1 = 2λ(α2 + r2 − 4αr cosφ) . (4.20)

Curves of constant energy, which is the unique conserved quantity, determines the

trajectories in the two-dimensional phase space Dq. In the present coordinates, theH1 = E

curves are nothing but circles whose centers are displaced a distance α from the center of

the disc Dq (see figure 2). The radii of these orbits are given by the energy through√
E/2λ. As long as E < 2λ( 1

1−q − α)2 the orbits are closed circles. However, for energies

2λ( 1
1−q − α)2 < E < 2λ( 2

1−q − α)2 the orbits are open arcs. In a semiclassical approach,

energies for which the trajectories are open in the phase space give rise to a the continuum

in the quantized system. The proper measure of the continuum is the phase space area

between energies E and E + δE. This area has to become infinite once the trajectories

reach the boundary (otherwise one would find that the phase space has finite area, and

then the total number of states would have to be finite).

The minimal and maximal energies of the continuum in the q → 0 limit are seen to

agree with the results of the quantum perturbation theory.

We now finally come to the case of arbitrary number of sites. In this case we will

only calculate the energy gap between the ground state and the first continuum band. To

obtain the energy for which the continuum begins, one has to look for the minimal energy

for which the energy constant hypersurfaces intersect the boundary of the phase space DL
q .

To this end one needs to compute and compare the absolute minimum of the resulting L

functions when one of the ri is set to 1
1−q . These L functions are bounded from below by

quadratic polynomials on the radii ri

HjL = HL|rj= 1
1−q
≥Mj

L = 2λ
L∑

i=0

ri (ri − ri+1)|rj= 1
1−q

, (4.21)
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and coincide with them when all angles φi are taken to be π. Then it suffices to find out the

minima of theMj
L. The stationary points should satisfy in all cases the recursive equation

2ri − ri+1 − ri−1 = 0 , (4.22)

subject to the boundary conditions

r0 =α , rj =
1

1− q , rL+1 =α . (4.23)

The recursive equation (4.22) is fulfilled by a linear dependence of ri on the site labeling

i, with the constants adjusted to also fulfill the boundary conditions (4.23). The critical

point of each Mj
L is

r∗i =

(
1− α(1− q)
j(1 − q)

)
i+ α if i ≤ j ,

r∗i =

(
α(1 − q)− 1

(L+ 1− j)(1 − q)

)
i+

L+ 1− jα(1 − q)
(L+ 1− j)(1 − q) if i > j . (4.24)

It is easy to see that each critical point is a minimum of eachMj
L, since all the eigenvalues

of the corresponding Hessians are strictly positive. The energy evaluated in these points is

HjL
∣∣∣
ri=r∗i ,φi=π

=
λ(L+ 1)(1 − α(1− q))2

j(L+ 1− j)(1 − q)2
. (4.25)

As a function of j, that takes values 1 ≤ j ≤ L, the minimal energy is obtained for the

j corresponding to the central site. So, the minimal energy for which constant energy

hypersurfaces intersect the phase space boundary is

Econt =





4λ(1−α(1−q))2

(L+1)(1−q)2 if L is odd

4λ(L+1)(1−α(1−q))2

L(L+2)(1−q)2 if L is even

. (4.26)

Let us now turn back to case q → 0. For L = 1 we have again Econt = 2λ(1 − α)2,

which is the minimum of the unique band (4.4) of the quantum system. For L = 2, we

have Econt = 3λ/2(1 − α)2 which is the minimum of the lowest band (4.17) computed

perturbatively for small α. We are eventually interested in the limit of a large number of

sites L. According to the classical analysis, the minimum of the lowest band is, in that

case,

Econt =
4λ(1 − α)2

L
. (4.27)

As we argued, from this energy the quantized system will have a continuum spectrum.

Then, this is the amount of energy needed for having configurations with a mean occupation

number growing in time. Note that this energy is accessible to long semiclassical strings.

Let us end this section, presenting how the transition from oscillatory to non-oscillatory

solutions near the value Econt is observed in numerical solutions. In figures 3, 4 and 5

we show different classical solutions of the system with L = 30 and their corresponding
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Figure 3: L = 30 solution with energy E = 0.94Econt.
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Figure 4: L = 30 solution with energy E = 0.99Econt.

t
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Figure 5: L = 30 solution with energy E = 1.05Econt.

occupation numbers. The 3 cases were solved with similar initial data. Only the amplitude

of the initial profiles (ri, φi) were slightly varied to change the energies. Moreover we

chose the energies to be near the critical value Econt. For energies below Econt, no ri can

tend to 1, so the mean occupation number is kept bounded. But as long as the energy is

bigger than Econt it is possible to find solutions with some ri approaching 1 and a mean

occupation number growing monotonically in time.

4.4 A toy model for the D-brane instability

We have found, surprisingly, that the spin chain model associated to a string attached

to a non-maximal giant exhibits a continuous spectrum. Naively, this is counter to our

intuition from AdS, as we have a finite energy state, and in the dual field theory, there are

only finitely many states with energy less than E. This means that the true spectrum of

the string plus D-brane system ultimately must be discrete.

Considering how we got our spin chain model, we have to notice that we had various

assumptions built in our computations. First, the giant has energy of order N , while the

string should have an energy of order
√
N , roughly, this corresponds to occupation numbers

lower than
√
N . This is required for the planar approximation to Feynman diagrams to

make sense. If the total angular momentum of the spin chain becomes large with respect to
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√
N , the planar approximation breaks down. This means that the Hamiltonian in terms of

the boson spin chain we have described is only valid in some regime (where the occupation

numbers are not too large), and when we get out of that regime, the fact that N is finite is

important. As we take N large, the bosonic spin chain model realm of applicability grows.

So the continuum spectrum and bands we have been discussing are a property of the strict

large N limit. At finite N , the continuum spectrum is resolved into a discrete spectrum

with an extremely fine spacing of the eigenvalues. This would be very hard for an observer

to determine. This continuum spectrum, which is associated with large quantum numbers

for the occupation numbers of the chain has to be interpreted in terms of classical physics

(this is the same reasoning that went into the work [54]). At large quantum numbers, the

problem becomes classical, and we should be able to come up with a classical argument

that shows that the strings should grow in size, so long as string interactions and the brane

back reaction can be ignored (these are the 1/N effects that the planar approximation does

away with).

Now, we want to come up with a model of the system that clearly shows the instability,

without the complications of the AdS5×S5 geometry. The idea is simple: we have a charged

D-brane in the presence of a magnetic RR background. Because of the background, a

moving D-brane is accelerated with respect to geodesic free-fall by a Lorentz force. Since

fundamental strings are not charged with respect to the RR-background, they should prefer

to follow geodesics.

This motivates the following toy model for the giant graviton setup: the ends of the

strings are attached to the D-brane, so they are accelerating. By the equivalence principle,

we can think of the same system as a string with fixed ends suspended in a gravitational

field. A close analogy of the setup is the act of suspending cables between telephone

poles. The telephone poles are replaced by the D-brane itself , and it is supported in

place by the RR-background. The cable between the telephone posts is the string. Unlike

conventional cables, the string tension is constant (a fundamental constant in perturbative

string theory). This means that in principle the string can weigh more that the tension

of the string can support. This requires a long string (long enough so that the weight of

string between the two posts is bigger than the string tension), whose length depends on

the strength of the gravitational field.

Since the string can not break (we are assuming that we are in the strict planar

approximation), the string will grow by falling, if it is long enough to begin with (this can

be accomplished by separating the putative telephone posts sufficiently). In fact, the string

will keep on falling forever if string interactions are turned off. Otherwise, the string will

get so long that eventually there is a finite probability per unit time that the one long

string will break into a closed loop plus a shorter string suspended between the post (this

can be understood as the emission of gravitational waves, or other fields, by an accelerated

object).

Our toy model clearly exhibits the instability of the string system that we found with

our spin chain model. It also provides for the presence of the gap: if the telephone posts are

close together, the minimal energy string will be stable. Indeed, many small perturbations

of the configuration will be allowed. To make the string fall, we might need to stretch
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it a lot, but once we have enough weight in the system, the string can not sustain the

total weight of the string, and the instability we discuss will have set in. Because we

have a regime where the string is stable, this regime of lower energy will have a discrete

spectrum, and when we reach the instability, we will get a continuous spectrum. This

gap is determined by the distance between the telephone posts (this can be related to the

total angular momentum of the string ground state), and by the effective gravitational

field. This effective gravitational field is determined by how much is the giant graviton

accelerating: the bigger giants move slowly, so their effective gravity is small, while small

giants move fast and accelerate a lot more.

This means that the gap in the spectrum should become smaller as the D-brane be-

comes smaller (in our spin chain notation, α becomes bigger). This is exactly what we see

from eq. 4.5, as well as from understanding the details of figure 2.

5. Evidence for integrability

In this section we present numerical evidence for the integrability of the classical Hamilto-

nian (4.19) for q ∈ [0, 1]. For L sites, this would correspond to have L constants of motion5.

Then, trajectories in the 2L-dimensional phase space take place in a L-dimensional torus.

However, with the exception of separable systems, there is no systematic procedure for

finding constants of motion. Even in the rather simple case of two sites, we do not know

another constant of motion apart from the energy whenever α 6= 0. Hypersurfaces of con-

stant energy are 3-spheres in D2
q , and if a second constant of motion existed, the motion

would be in a 2-torus included in the 3-sphere. Then, the intersection of this 2-torus with

a any hypersurface (of dimension 3) would be in general a closed curve in the phase space.

We can verify if this is the case by studying numerical solutions of the system. For exam-

ple, in figure 6 we plot the values of coordinates (r2, φ1, φ1) of a given solution for many

different times when the variable r1 takes the value 1/2. The fact that points lie in a closed

curve is a strong indication that the motion is taking place in a 2-torus and the system is

integrable. One can try this for many different hypersurfaces and one always gets closed

curves. Similar evidence is found for cases with higher number of sites.

Note that for q = 1 the deformed operators (E.1) become the usual harmonic oscillators

and the system becomes a lattice of ordinary bosons. In this case quantum and classical

integrability follow trivially. For q 6= 1 the classical Hamiltonian (4.19) can be seen as a

deformation of the Hamiltonians studied in [55 – 57]. We now conjecture that our family

of Hamiltonians parameterized by q, α is indeed a two parameter family of (quantum)

integrable Hamiltonians.

Because the spectrum of the quantum hamiltonian has a continuum, it is very unlikely

that the system can be solved via a simple Bethe Ansatz for all α, even though for α = 0

the system can be solved via a Bethe Ansatz. The distinction between α = 0 and α 6= 0

resides in the fact that the constant energy surfaces are compact in the first case, while they

are non-compact in the second case (they intersect the boundary). This non-compactness

5Moreover the constants of motion should be compatible with each other, which means that the Poisson

brackets with each other should vanish.
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r2

φ1

φ2φ2

Figure 6: Intersections of the a solution with r1 = 1/2.

of the energy surfaces for the spin model upsets the usual Bethe Ansatz intuition for finite

systems. In finite systems the Bethe ansatz hinges in having some discrete conserved

number of quasi-particles, and this produces a system of algebraic equations that describe

scattering of these quasi-particles with each other and the boundary. The solutions of these

Bethe equations give a finite number of roots that one identifies with the discrete spectrum

of the finite system.

To have a continuous spectrum one needs one of two conditions: either the spin chain

is infinite, or the conserved “number of quasiparticles” is described by a continuous param-

eter. The first case does not describe our system well, as we have found that the ground

state has a well defined finite length (average number of spins). The second case would not

produce algebraic equations that solve for the spectrum and we would be hard pressed to

call such a system a Bethe Ansatz.

However we seem to have an integrable system with a continuous spectrum. We should

contrast this observation with the observation of [27] that the Bethe Ansatz seems to

break down at two loops for the maximal giant graviton, or that the BMN limit breaks

down [28]. There are also other hints that the asymptotic Bethe Ansatz conjecture is

incomplete [31]. We interpret all of these facts not as a breakdown of integrability, but

instead as a breakdown of applicability of a Bethe Ansatz.

6. Discussion

In this paper we have shown an example that dynamical finite D-branes can be treated

consistently in the AdS/CFT setup. In particular we showed that we were able to charac-

terize the D-brane in the most conservative form: as a geometric locus where open strings

can end. We saw that this property could be derived exactly from the dual field theory.

We were able to do this not just for a maximal giant graviton, but also for smaller giant

gravitons that move in the AdS spacetime. The calculations required in field theory were

rather subtle and we found a lot of surprises in trying to explain the dynamics of this

system in detail.

The first surprise we found was that the trajectory of the spherical giants we studied

contained families of null geodesics, and that it was possible to take a standard Penrose
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limit along these trajectories. We found that this limit gave us a different coordinate system

than the usual one, because it was adapted to the D-brane being static.

We then found that is was possible in the limit of large quantum numbers to get the

classical ratio of different components of angular momentum carried by the ground state

of the string. Part of it was along the direction of angular momentum of the giant, and

the string and giant in principle exchange angular momentum between them.

We then looked for a description of these semiclassical states of the AdS geometry

directly in the dual field theory in the perturbative weak coupling approximation. We

found a spin chain model with variable numbers of sites at the boundary. We were also

able to describe this system in terms of a boson chain model, where the individual bosons

obeyed Cuntz algebra oscillator relations. The Hamiltonian we found was quadratic in

generalized raising and lowering operators. It results as a limit q → 0 of a q-deformed

chain of harmonic oscillators with nearest neighbor interactions. The boson system did not

preserve the total boson occupation number, so the boundary conditions we found are of

non-diagonal type.

A big surprise was that when we tried to diagonalize the boson chain model we found

a continuous spectrum of the effective hamiltonian. This was very unexpected when we

started the project, but we found an analogy that made it intuitively obvious and necessary

for the AdS/CFT correspondence to work. The analogy consists on thinking of the system

as an open string whose ends are accelerated because they are attached to a D-brane,

in the presence of a RR background. The background accelerates the D-brane, and the

D-brane drags the string itself. The continuous spectrum was argued to be related to an

instability that appears only if the string is too long and can not support its own weight.

This instability might be interesting for the study of cosmic strings, because it can serve

as a mechanism to seed long strings in an expanding universe.

We also found numerical evidence that the open string attached to the giant graviton

was in general to one loop order governed by an integrable system. Our evidence is nu-

merical and classical. We also found that the continuous spectrum seems to prevent the

integrability of the system to be described by a Bethe Ansatz.

Nevertheless, despite this progress, there are many loose ends and open problems left

to study. Here we would like to list some of them to encourage future research along these

lines.

1. The Plane Wave Spectrum and Integrability

The issue of the integrability of the Hamiltonian (3.9) is important to prove the pres-

ence of the BMN spectrum. However, the fact that the spectrum has continuum

energy bands suggests that integrability might be realized in a way quite different

from the usual Heisenberg spin chain. In fact, since we have absorption and emission

from the boundaries, one wonders if the usual formalism using the boundary reflec-

tion matrices could be generalized to take into account this effect [58]. Whatever

the answer, this problem can have implications beyond the study of the AdS/CFT

correspondence and should be very interesting to resolve.
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2. The D-brane Instability

As we mentioned before, the end state of the unstable giant graviton is difficult to

predict from our current results. The reason is that all the approximations used in

our field theory calculations are invalidated when the word’s length describing the

string is large with respect to
√
N . In any case, the end state of this instability can

be important for the study of certain classical spacetimes. In particular we know

that the 1/2 BPS supergravity solutions found in [59] can be interpreted as coherent

states of these giant gravitons (and the AdS giants). One can excite massive open

string modes on these backgrounds and ask what effect the instability studied here can

have on these backgrounds (one might imagine that these might serve as a mechanism

to transport charge between droplets for example). This can be important for the

stability of black holes since one can imagine that these will be constructed by exciting

many open string modes on the D-branes. Finally, one can ask if this instability is

also present in the case of AdS giant gravitons.

3. Beyond the SU(2) Sector

In this paper we only considered open strings with two angular momenta on the

sphere. In other words, an SU(2) subsector of the corresponding gauge theory op-

erators. However, it is interesting to go beyond this sector. At this moment we do

not know how to write down a “nice” Hamiltonian describing the full SO(6) exci-

tations on the sphere. However, one can consider an SU(3) subsector by using the

three holomorphic fields: X, Y and Z. The generalization of our Hamiltonian is

straightforward. The most general word can be labeled as,

(Y Zn1XZn2Y · · ·ZnLX)ji
∼= |s1, n1, s2, n2, . . . , nL, sL+1〉 , (6.1)

where si =↑ or ↓∼= X orY , is an SU(2) spin label and ni is the usual bosonic occu-

pation number.

The interactions between the sites are much the same as before except when any

ni = 0. In this case we have the additional permutation interaction between the two

spins si and si+1 (see eq. (C.14)). One can then write the Hamiltonian as,

H = Hboson + λ
L∑

l=1

(1− P̂l,l+1)(1 − â†l âl) , (6.2)

where Hboson is the Hamiltonian for the bosonic lattice (3.9), and P̂l,l+1 = 1
2(1 + 4~Sl ·

~Sl+1) is the permutation operator acting on the spin sites.

Constructing the action for the coherent states goes as usual (see appendix D). We

get,

S = −L
∫
dt

∫ 1

0
dσ

[
r2

1− r2
φ̇+

1

2
cos θ ϕ̇+

λ

L2
(r′2 + r2φ′2)

+
λ

4L2
(1− r2)(θ′2 + sin2 θ ϕ′2)

]
, (6.3)
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where the angles θ, ϕ label the SU(2) coherent states. On the other hand, one can

study the dual string theory and write the Polyakov action for open strings as we

did in section 2. Using the natural coordinates adapted to the brane, and making

the expansion in large total angular momentum in the X and Y directions we get

the action (6.3) with the exception that the last term has a different r dependence:

∼
∫
dtdσ(1 − r2)2(θ′2 + sin2 θ ϕ′2). It would be interesting to understand the nature

of this discrepancy.

4. Multiple D-branes

Recently it was shown how to write down the operators corresponding to multiple

giant gravitons with strings attached to them [23]. In general the combinatorics

are hopelessly complicated. However one can study the case of two giant gravitons

with two strings stretching between them (we need two strings to satisfy the Gauss

constraint [23]). Intuitively one would expect Hamiltonians like (3.9) but with more

general coefficients for the boundary terms (different values at each boundary). In

this case there can be a “current” of Z fields from one giant to the other. It would

be interesting to see what happens in this case. We expect that the giants attract

each other. We would also expect the same instability we found for these models.

Moreover, one should be able to measure the distance between the two giants using

the sigma model representation of the coherent states. More generally, one should

also be able to study D-branes at angles, and measure the angles between them by

finding the spectrum of open strings stretching between them.

For many giants the easiest description seems to be in terms of the matrix model

of [45]. However it is still not clear how to introduce the open string excitations

in that language6. It would be interesting to re-derive the results presented in this

paper using the matrix model formalism. This can also give a better understanding

of the backreaction of the giant gravitons with massive open string modes.

5. AdS Giants

One can try to extend the results of this paper to the study of the giant gravitons

that expand in the AdS space. The operators are similar to the ones considered

here but with the ε symbol replaced with totally symmetric tensor contractions. The

combinatorics can be done in a similar way but the field theory interactions are more

complicated when we consider an open string spinning along the AdS directions. This

is because, instead of scalar “letters” we need to use covariant derivatives. However,

one expects a simple description in terms of spin chains (or a bosonic lattice) as for

closed strings [60, 10].

6. Giants of critical angular momentum

In this paper we have considered giant gravitons whose angular momentum grows

proportionally to N . It would be interesting to study gravitons with angular momen-

tum p ∼
√
N . For p2/N fixed and p2/N ¿ 1 the gravitons should be described as

6See [26] for the emergence of closed string BMN excitations in the matrix model
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point-like supergravity modes (as it is done in the BMN limit). However, for p2/N

fixed and p2/N À 1 the appropriate description is in terms of expanded D3-branes.

From (2.6) one immediately realizes that the angle θ0 goes now to zero in the large N

limit and each element of the giant is traveling in an almost null geodesic. Moreover,

from (2.7) it is evident that the radius of the giant remains finite in the limit. Then,

a short open string attached to this giant is effectively described by an open string

attached to a spherical D3-brane of finite radius in a pp-wave background [61]. The

string does not need to be spinning along the giant. Then, bosonic lattices with a

finite and small number of sites should be used to describe the dilation operator in

the dual field theory.
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A. Penrose limit

The Penrose limit is accomplished defining new coordinates by means of a linear transfor-

mation and taking an appropriate R → ∞ limit. The coordinate playing the role of the

curve parameter, must appear with the same coefficient in t, ψ and η, if we want to capture

the geometry near the null trajectory (2.9). The rest of the coefficients can be fixed by

demanding the R→∞ limit to be well-defined. Then, we consider the transformation

t = u+
v

R2
, ρ =

r

R

ψ = u− v

R2
+ tan θ0

x

R
, θ = θ0 +

y

R

η = u− v

R2
− cot θ0

x

R
, ϕ =

z

R sin θ0
. (A.1)

After this scaling and the limit R→∞, the metric becomes,

ds2 = −4dudv + 4ydudx− (r2 + z2)du2

+dx2 + dy2 + dz2 + z2dξ2 + dr2 + r2dΩ2
3 . (A.2)

If we define cartesian coordinates

z1 = z sin ξ , z4 = r sinϕ′ cos η′

z2 = z cos ξ , z5 = r cosϕ′ sin ξ′ ,

z3 = r sinϕ′ sin η′ , z6 = r cosϕ′ cos ξ′ , (A.3)
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the metric is written as,

ds2 = −4dudv + 4ydudx−
6∑

a=1

z2
adu

2 + dx2 + dy2 +

6∑

a=1

dz2
a , (A.4)

and the RR 5-form field strength is

F(5) = 2du ∧ (dz1 ∧ dz2 ∧ dz3 ∧ dz4 + dz5 ∧ dz6 ∧ dz7 ∧ dz8) . (A.5)

This pp-wave configuration can be put in the standard form using the following coor-

dinate transformation [37]

x+ = u , x1 = x cos u+ y sinu ,

x− = v − 1

2
xy , x2 = −x sinu+ y cos u ,

xa+2 = za , for a = 1, . . . , 6 . (A.6)

which leads the metric to

ds2 = −4dx+dx− −
8∑

i=1

x2
i dx

2
+ +

8∑

i=1

dx2
i . (A.7)

Notice that this transformation involves rotations at constant angular velocity in the x, y

plane. In this sense, the D-brane we will be considering are rotating in the standard plane

wave limit.

B. Brane in the Penrose limit

To see how the D3-brane is specified in terms of the new coordinates (A.1) we should apply

the coordinate transformation to the boundary conditions and then take the R→∞ limit.

In the original coordinates, the giant expands in (ϕ, η, ξ), and then for an open string, they

should satisfy Neumann boundary conditions

∂σϕ|σ=0,π = 0 , (B.1)

∂ση|σ=0,π = 0 , (B.2)

∂σξ|σ=0,π = 0 . (B.3)

On the other hand, the giant is situated in ρ = 0 and θ = θ0. Therefore, these coordinates

have Dirichlet boundary conditions

δρ|σ=0,π = 0 , (B.4)

δθ|σ=0,π = 0 . (B.5)

The remaining transverse direction to the D-brane is ψ and the D-brane is moving along

this angle with ψ = t. The corresponding Dirichlet boundary condition is

δψ|σ=0,π = δt|σ=0,π . (B.6)
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As a consequence, the remaining Neumann boundary condition also mixes t and ψ

∂σt|σ=0,π = cos2 θ0 ∂σψ|σ=0,π . (B.7)

Using (A.1) the set of boundary conditions (B.1)–(B.7) is translated, before the limit

R→∞, into

∂σz|σ=0,π = 0 , (B.8)

∂σξ|σ=0,π = 0 , (B.9)

∂σv|σ=0,π = 0 , (B.10)

∂σu|σ=0,π =
cot θ0

R
∂σx|σ=0,π , (B.11)

δρ|σ=0,π = 0 , (B.12)

δy|σ=0,π = 0 , (B.13)

δx|σ=0,π =
2 cot θ0

R
δv|σ=0,π . (B.14)

So, in the R→∞ limit, we have Neumann boundary conditions for u, v, z1, z2 and Dirichlet

boundary conditions for x, y, z3, z4, z5, z6.

C. Combinatorics and field theory calculations

We begin by listing some properties of the totally anti-symmetric tensor that are useful for

field theory calculations. This tensor is defined as

ε
i1···ip
j1···jp ≡





1 if (i1 · · · ip) is an even permutation of (j1 · · · jp)
−1 if (i1 · · · ip) is an odd permutation of (j1 · · · jp)

0 otherwise

, (C.1)

where p is any integer p ≤ N , and i1, . . . , ip and j1, . . . , jp are integers from 1 to N . The

simplest examples are

εij = δij ,

εijkl = δikδ
j
l − δilδ

j
k . (C.2)

Some of most useful properties of the ε tensor are

ε
i1···ip
j1···jp =

p∑

x=1

(−1)x+1δi1jxε
i2 . . . ip
j1···jx−1jx+1···jp , (C.3)

ε
i1···ikik+1···ip
i1···ikjk+1···jp =

(N − p+ k)!

(N − p)! ε
ik+1···ip
jk+1···jp , (C.4)

εi1···ikj1···jkε
j1···jp
l1···lp = k!ε

i1···ikjk+1···jp
l1 . . . lp

. (C.5)

Another useful identity that can be derived from the ones above is

ε
j1···jp−1γ1

i1···ip−1µ1
ε
i1···ip−1γ2···γk
j1···jp−1µ2···µk =

(p− 1)!(N − k + 1)!

(N − p− k + 2)!

(
δγ1
µ1
εγ2···γk
µ2···µk −

(p− 1)

(N − k + 1)
εγ1···γk
µ1···µk

)
.
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(C.6)

In the rest of this appendix we present some of the field theory calculations leading to

the Hamiltonian (3.9). Most of the calculations are very similar to those presented in [25]

in the context of maximal giant gravitons.

We begin by pointing out that an operator with a Z field at the end or beginning of

the word does not represent a linearly independent state. In fact, from the identities above

one can show that

ε
j1···jp
i1···ipZ

i1
j1
· · ·Z ip−1

jp−1
(ZW )

ip
jp

=
1

p
ε
j1···jp
i1···ipZ

i1
j1
· · ·Z ipjp Tr(W )− 1

p
ε
j1···jp+1

i1···ip+1
Zi1j1 · · ·Z

ip
jp
W

ip+1

jp+1
.

(C.7)

This shows that the operator with a Z at the border of the word factorizes into a brane

with a closed string and a bigger brane.

Now we turn our attention to the correlation functions. These will be computed to

one loop in the ’t Hooft coupling and using the planar approximation of the large N limit.

We will be using the bosonic part of the SYM action given by

S =
1

2πgs

∫
d4xTr

(
1

2
FµνF

µν +DµXD
µX +DµY D

µY +DµZD
µZ + VD + VF

)
,

(C.8)

where,

VD =
1

2
Tr
(
|[X,X ] + [Y, Y ] + [Z,Z ]|2

)
, (C.9)

VF = 2Tr
(
|[X,Y ]|2 + |[X,Z]|2 + |[Y,Z]|2

)
. (C.10)

Let us begin with the free field correlation functions, since they are going to give us

the normalization of the operators. The propagator for the scalars is of the form

〈φij(x)φ̄kl (0)〉 =
gs
2π

1

|x|2 δ
i
lδ
k
j , (C.11)

where φ is any of the complex scalars X,Y,Z. Thus we see that the correlation function

of any word with a total classical dimension ∆0 will be multiplied by the following overall

numerical factor: ( gs2π
1
|x|2 )∆0 . In what follows we will drop this factor from the calculations

for simplicity.

Let us now compute the correlation function for the operator

OpW = ε
j1···jp
i1···ipZ

i1
j1
· · ·Z ip−1

jp−1
W

ip
jp
, (C.12)

where the word W has classical dimension L. We will assume that the operator is very long

such that p >
√
N and L .

√
N with pÀ L. In the large N limit, the leading contribution

will come from contracting all the Z fields and then the words planarly. Moreover, in the

large N limit operators with different values of p and word lengths will be orthogonal.

Thus the free theory two point function gives

〈ŌpWO
p
W 〉free ∼ (p− 1)!ε

j1···jp−1γ1

i1···ip−1µ1
ε
i1···ip−1γ2

j1···jp−1µ2
〈W̄ µ1

γ1
W µ2
γ2
〉free
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=
(p− 1)!2(N − 2)!

(N − p− 1)!

[
〈Tr(W̄ ) Tr(W )〉free +

(p− 1)

N − p 〈Tr(W̄W )〉free
]

∼ p!(p− 1)!(N − 1)!NL

(N − p)! . (C.13)

In going to the second line of (C.13) we used the identity (C.6) and for the third line we

contracted the words using the planar approximation.

If the word W is made of a single type of field we will get an additional multiplicative

factor of L(1 +O(L/N)) to (C.13) from the cyclic property of the trace. This is one of the

reasons we consider only L¿ N and in particular L .
√
N .

We now turn on the Yang-Mills coupling and consider the interactions between the

scalars. Let us start by calculating the interactions in the bulk of the words. This terms

are obtained when all the Z fields of the giants are contracted we free field propagators and

the vertex is entirely contracted with letters of the words. In the planar approximation

these will be the familiar nearest-neighbor interactions that were considered by Minahan

and Zarembo [9]. Thus if we regard each “letter” in W as a SO(6) vector, the nearest-

neighbor interactions have the familiar form,

Hl,l+1 =
1

2
λ[Kl,l+1 + 2(Il,l+1 − Pl,l+1)] , (C.14)

where K and P are the trace and permutation operators respectively and λ = gsN/2π. For

the SU(2) and SU(3) sectors considered above, the trace will be zero and it is easy to see

that the remaining interactions account for the first two terms in the Hamiltonian (3.9).

For completeness, let us show how to calculate the bulk part of the Hamiltonian by

considering the example of the interactions giving rise to the identity in (C.14). To this

end we study the interaction between a X and Y fields of the operator

OpXY = ε
j1···jp
i1···ipZ

i1
j1
· · ·Z ip−1

jp−1
(W1XYW2)

ip
jp
. (C.15)

It is well known that for chiral operators the interactions coming from VD cancel with the

gauge boson exchange and the scalar self energies. Therefore, the only relevant interactions

between X and Y will come from the F term. It is not difficult to see that the only planar

interaction will be,

− 1

πgs

∫
d4x Tr(XY Ȳ X̄) . (C.16)

This interaction is illustrated in figure 7.

The rest of the free theory contractions go as before. Therefore, all we get from the

interaction is a multiplicative correction to (C.13) of the form

( gs
2π

)−2 ( gs
2π

)4
N

(
− 1

πgs

)
|x|4

∫
d4y

1

|y|4|x− y|4 ≈ −2λ log(|x|Λ) . (C.17)

Thus, after dividing by the norm (C.13) and using the definition of the anomalous dimension

matrix (3.5), we see that this interaction will give a numerical contribution of λ to the

identity interaction in agreement with (C.14).
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Figure 7: One-loop interaction between two nearest-neighbor letters of a word generated by a

vertex of the form Tr(XY Ȳ X̄).

+

=0 + gluon + 
self energyVD

VD
= gluon + 

self energy

X Y

X Y

X Y

X Y

X

X Y

X Y

X Y

Y

Figure 8: The first line of the figure illustrates the cancelation of the D-term contribution with the

gluon exchange and the scalars self energies for a chiral operator. Since the gluon and self energy

interactions are flavor blind they will give the same numerical value if we compute them using the

non-chiral operator as in the second line.

Now let us see what happens when we have a non-chiral operator. Let us consider the

word W1XȲ W2. In this case the D-term interaction will no longer cancel with the gauge

boson exchange and the scalar self-energies. However, we can exploit the fact that these

last two interactions are flavor blind to write their contribution in terms of the D-term

contribution to the chiral operator. This is illustrated in figure 8.

It is not difficult to see that there is no planar contribution to the identity coming from

the F-term. Thus, the total contribution to this interaction is from the diagrams shown in

figure 9.

The first diagram comes from the vertex

− 1

2πgs
Tr(XȲ Y X̄) , (C.18)

and the second from

− 1

2πgs
Tr(XY Ȳ X̄) . (C.19)
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DVD

X Y

X Y

X

X Y

Y

− V

Figure 9: Total contribution to the one-loop interaction between X and Ȳ of the word W1XȲW2.

The second term is the gluon and self energy interactions calculated in terms of VD using the result

illustrated in the previous figure.

Note that the second vertex is to be evaluated between the chiral operator. At the end,

we see that we will get a numerical contribution of λ/2 from each interaction, and this

will sum up to the contribution shown in (C.14). The rest of the interactions in the

Hamiltonian (C.14) can be obtained in a similar way.

Let us now turn our attention to the interactions between the word and the Z fields of

the giant graviton. The first contribution comes from the scalars at the ends of the word.

Thus we can study the operator

Opφ = ε
j1···jp
i1···ipZ

i1
j1
· · ·Z ip−1

jp−1
(φW )

ip
jp
, (C.20)

where φ is any of the complex scalars except Z and the word W has length L− 1. Doing

the free contractions we get

〈Ōpφ(x)Opφ(0)〉 ∼ NL−2(p− 1)2(p− 2)!ε
j1 ···jp−2γ1γ2

i1 ···ip−2µ1µ2
ε
i1···ip−2γ3γ4

j1···jp−2µ3γ2

×〈Z̄µ1
γ1

(x)Zµ3
γ3

(0)[φ(0)φ̄(x)]µ2
γ4
〉 .

(C.21)

We now note that there are only two relevant planar interactions. These will have the

general form:

− α

πgs
Tr(ZZ̄φφ̄) , − β

πgs
Tr(Z̄Zφφ̄) . (C.22)

If the field φ is X̄, Ȳ or Z̄, the constants α, β will need to include the contribution from

the gauge boson exchange and the scalar self energies. In any case, the interactions (C.22)

will give a contribution to (C.21) of

〈Ōpφ(x)Opφ(0)〉 ∼ −2λNL p!(p− 1)!(N − 1)!

(N − p)!
[
α
p

N
+ β

(
1− p

N

)]
log(|x|Λ) ,

(C.23)

up to multiplicative corrections of order 1/p and 1/N . Thus after dividing by the norm

(C.13) we get the following contribution to the anomalous dimension: λ[αp/N+β (1−p/N)].

Calculating the constants α and β is just a matter of counting how many terms like (C.22)

we can find in VD and VF . At the end we get that for the fields X,Y, X̄ or Ȳ , α = 0 and

β = 1. Thus the anomalous dimension gives λ(1 − p/N). Translating to the boson lattice
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language and taking into account the contribution to the field at the other end of the word,

this gives the first term in the second line of the Hamiltonian (3.9). On the other hand,

if φ = Z̄ we have that α = −1 and β = 3/2. Thus the contribution to the anomalous

dimension is λ(1 + (1− p/N)/2).

Finally, there is an interaction that is not present in the case of the maximal giant

graviton. This is the exchange of a Z field between the word and the giant graviton. In

the planar approximation this can only happen when the Z is the second or next to last

letter of the word. To calculate this amplitude we can consider the correlation between the

operators

Op+1 = ε
j1···jp+1

i1···ip+1
Zi1j1 · · ·Z

ip
jp

(XW )
ip+1

jp+1
, Op = ε

j1···jp
i1···ipZ

i1
j1
· · ·Z ip−1

jp−1
(XZW )

ip
jp
, (C.24)

and assume that the word W has classical dimension L. The calculation here is very similar

to the previous example. The free contractions give

〈Ōp+1(x)Op(0)〉 ∼ NL−1p!ε
j1···jp−1γ1γ2

i1···ip−1µ1µ2
ε
i1···ip−1γ3

j1···jp−1γ2
〈Z̄µ1

γ1
(XZX̄)µ2

γ3
〉 .

(C.25)

Since these are chiral operators, the only interactions will come from VF . It is easy to see

that the only planar interaction will be

+
1

πgs
Tr(ZXZ̄X̄) . (C.26)

Doing the contractions we get

〈Ōp+1(x)Op(0)〉 ∼ 2λNLp!ε
j1···jp−1γ1γ2

i1···ip−1µ1γ1
ε
i1···ip−1µ1

j1···jp−1γ2
log(|x|Λ)

= −2λNL+2 p!
2(N − 1)!

(N − p)!
(

1− p

N

)
log(|x|Λ) , (C.27)

where we have used the identities (C.4) and (C.5).

The norms are

〈ŌpOp〉free ∼
p!2(N − 1)!NL+2

p(N − p)! , (C.28)

〈Ōp+1Op+1〉free ∼
(p+ 1)p!2(N − 1)!NL+2

(N − p)!
(

1− p

N

)
. (C.29)

Therefore, for large p the contribution to the anomalous dimension is: λ
√

1− p/N . We

recognize this as sources/sinks in the Hamiltonian (3.9).

To conclude we show that closed string emission/absorption is suppressed in the large

N limit if we take p ∼ γN . For definitiveness consider the operators

Op1 = ε
j1···jp
i1···ipZ

i1
j1
· · ·Z ipjp Tr(Y L) , Op2 = ε

j1···jp
i1···ipZ

i1
j1
· · ·Z ip−1

jp−1
(Y ZY L−1)

ip
jp
. (C.30)

Then, the interacting correlation function gives (up to signs or numerical factors)

〈Ōp1O
p
2〉 ∼ λ

Lp!2(N − 1)!NL

(N − p)! log(|x|Λ) , (C.31)
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The norms are,

〈Ō1O1〉free ∼
Lp!2N !NL

(N − p)! , 〈Ō2O2〉free ∼
p!2N !NL

p(N − p)! ,

(C.32)

Therefore, the contribution to the anomalous dimension is of the order

λ

√
Lp

N
∼ λ

√
L

N
, (C.33)

This is clearly suppressed in the limit we are considering of L .
√
N .

D. Calculations in the SU(3) sector

Here we give some more details about the calculation of the effective sigma model action

for the SU(3) sector. We begin with the gauge theory side. The coherent states for states

of the form (6.1) take the product form

|CS〉 =

L⊗

i=1

|~ni, zi〉 ⊗ |~nL+1〉 , (D.1)

where |zi〉 are the bosonic coherent states (E.2) and |~ni〉 are the SU(2) coherent states

defined by [53, 32],

|~n〉 = eiSzϕeiSyθ| ↑ 〉 , (D.2)

where ~n = (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector in S2. They obey

〈~n|~S|~n〉 =
1

2
~n , (D.3)

〈~n|~n′〉 =

[
cos

1

2
(θ − θ′) cos

1

2
(ϕ− ϕ′)− i cos

1

2
(θ + θ′) sin

1

2
(θ − θ′)

]
ei

1
2

(ϕ−ϕ′) . (D.4)

The action for the coherent states is

S = lim
L→∞

∫
dt (i〈CS|∂t|CS〉 − 〈CS|H|CS〉) , (D.5)

and we get (6.3).

On the other hand, one can study the dual string theory and write the Polyakov action

for open strings as we did in section 2. In the case of three spins, the natural coordinates

on the sphere |X|2 + |Y |2 + |Z|2 = 1 are

X = ±
√

1− r2 cos θ eiϕ1 , Y = ±
√

1− r2 sin θ eiϕ2 , Z = rei(t−φ) , (D.6)

where the giant graviton is located at r =
√

1− p/N and ϕ = ϕ1 + ϕ2 − t. Following [34]

we can make another change of coordinates:

α =
1

2
(ϕ1 + ϕ2) , β =

1

2
(ϕ1 − ϕ2) , U1 = cos θeiβ , U2 = sin θe−iβ . (D.7)
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In these coordinates, the metric on R× S5 takes the form

ds2 = −(1− r2)dt2 +
1

1− r2
dr2 + r2dφ2 + 2r2dφdt+ (1− r2)

[
(Dα)2 +

1

4
dnidni

]
, (D.8)

where coordinates on a S2 are given by ni = ξ†σiξ, where ξ = (U1e
iα, U2e

−iα) and σi are the

Pauli matrices. The covariant derivative is defined as Dα = dα+ C, where C = −iŪidUi.
We now want to expand the Polyakov action in the limit of large angular momentum

in α, and choose a gauge where this angular momentum is uniformly distributed along the

string. Note that this angular momentum is dual to the total number of Xs and Y s in

the word (6.1). We choose the coordinates in the Polyakov action such that α is coupled

through its covariant derivatives ∼ gabDaαDbα, where Daα = ∂aα− iŪi∂aUi.
With this choice, the lagrangian density in momentum space (2.37) becomes

L = pt ṫ+ prṙ + pφφ̇+ pαDtα+ piṅi , (D.9)

and we have the usual constraints:

Gµνpµpν +GµνX
′µX ′ν = 0 , (D.10)

pµX
′µ = 0 . (D.11)

We then choose the usual gauge: pα = 2J = constant and t = τ , where the total

angular momentum in α is L =
√
λYMJ . From (D.11) we can eliminate D1α and then

use (D.10) to eliminate pt from the Lagrangian (D.9). The result is

L = pφ + paẊ
a + 2JC0 −

√
Λabpapb + Λ , (D.12)

where the indices a, b run trough the rest of the coordinates excluding t and α. The

functions Λab and Λ are

Λ =
4J 2

1− r2
+

r′2

1− r2
+ r2φ′2 + (1− r2)n′2i , (D.13)

Λrr = (1− r2)

(
1 +

r′2

4J 2

)
, (D.14)

Λφφ = 1 + (1− r2)

(
1

r2
+

φ′2

4J 2

)
, (D.15)

Λii =
1

1− r2
+

1− r2

4J 2
n′2i , (D.16)

Λrφ = Λφr =
(1− r2)r′φ′

4J 2
, (D.17)

Λri = Λir =
(1− r2)r′n′i

4J 2
, (D.18)

Λφi = Λiφ =
(1− r2)φ′n′i

4J 2
, (D.19)

Λij = Λji =
(1− r2)n′in

′
j

4J 2
. (D.20)
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(D.21)

We then proceed as before by eliminating the momenta using their equations of motion.

This gives

L = 2JC0 −
√

Λ(1− Λabẋaẋb) , (D.22)

where ẋa = Ẋa for a 6= φ and ẋφ = 1 + φ̇, and Λab is the inverse of the symmetric matrix

Λab.

One can now expand as usual in the limit of large J assuming Ẋa ∼ O(1/J 2). To

lowest non-trivial order we get the action (6.3) except that for the r dependence of the last

term we get
∫
d2σ(1− r2)2(∂1ni)

2.

E. Coherent states for the q-deformed algebra

The q-deformed algebra has the following representation [62],

a†|n〉=
√

[n+ 1] |n+ 1〉 , a|n〉=
√

[n] |n− 1〉 , with [n] ≡ 1− qn
1− q . (E.1)

Coherent states can be defined as eigenstates of the annihilation operator, and they are

given by [63]

|z〉 =
(
expq(|z|2)

)−1/2
∞∑

n=0

zn√
[n]!
|n〉 , with |z| < 1

1− q , (E.2)

where [n]! = [1].[2] . . . [n]. The q-exponential is defined by,

expq(x) =

∞∑

n=0

xn

[n]!
=

1

Π∞k=0(1− qk(1− q)x)
. (E.3)

As usual, these coherent states constitute a non-orthogonal and overcomplete basis. The

overlapping between coherent states is

〈z|z′〉 =
expq(z̄z

′)
(
expq(|z|2) expq(|z′|2)

)1/2 . (E.4)

The resolution of the identity takes the form,

1

π

∫

Dq

d2
qz|z〉〈z| =

1

2π

∫ 2π

0
dφ

∫ 1/(1−q)2

0
dq(r

2)|z〉〈z| = 1 . (E.5)

where Dq is the open disk in the complex plane with radius 1/(1 − q), z = reiφ and the

integral over r is the so-called Jackson Integral,

∫ a

0
f(x)dqx = a(1− q)

∞∑

n=0

qkf(qka) , (E.6)

which satisfies
∫ x1

0 (expq(x))−1xndqx = [n]!.
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